.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_explain_example.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_explain_example.py: Model Explanation ================= .. GENERATED FROM PYTHON SOURCE LINES 5-19 .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/images/sphx_glr_plot_explain_example_001.png :alt: ROC curve for class 0, ROC curve for class 1, ROC curve for class 2 :class: sphx-glr-multi-img * .. image:: /auto_examples/images/sphx_glr_plot_explain_example_002.png :alt: class: 0, class: 1, class: 2 :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Running DummyClassifier() accuracy: 0.338 recall_macro: 0.333 precision_macro: 0.113 f1_macro: 0.169 === new best DummyClassifier() (using recall_macro): accuracy: 0.338 recall_macro: 0.333 precision_macro: 0.113 f1_macro: 0.169 Running GaussianNB() accuracy: 0.962 recall_macro: 0.964 precision_macro: 0.967 f1_macro: 0.964 === new best GaussianNB() (using recall_macro): accuracy: 0.962 recall_macro: 0.964 precision_macro: 0.967 f1_macro: 0.964 Running MultinomialNB() accuracy: 0.954 recall_macro: 0.957 precision_macro: 0.959 f1_macro: 0.957 Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) accuracy: 0.624 recall_macro: 0.650 precision_macro: 0.456 f1_macro: 0.525 Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) accuracy: 0.872 recall_macro: 0.880 precision_macro: 0.883 f1_macro: 0.871 Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) accuracy: 0.917 recall_macro: 0.920 precision_macro: 0.925 f1_macro: 0.918 Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) accuracy: 0.977 recall_macro: 0.979 precision_macro: 0.978 f1_macro: 0.978 === new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): accuracy: 0.977 recall_macro: 0.979 precision_macro: 0.978 f1_macro: 0.978 Running LogisticRegression(class_weight='balanced', max_iter=1000) accuracy: 0.970 recall_macro: 0.970 precision_macro: 0.972 f1_macro: 0.970 Best model: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) Best Scores: accuracy: 0.977 recall_macro: 0.979 precision_macro: 0.978 f1_macro: 0.978 precision recall f1-score support 0 1.00 1.00 1.00 12 1 1.00 0.96 0.98 23 2 0.91 1.00 0.95 10 accuracy 0.98 45 macro avg 0.97 0.99 0.98 45 weighted avg 0.98 0.98 0.98 45 [[12 0 0] [ 0 22 1] [ 0 0 10]] /home/circleci/project/dabl/plot/utils.py:378: UserWarning: FixedFormatter should only be used together with FixedLocator ax.set_yticklabels( | .. code-block:: default from dabl.models import SimpleClassifier from dabl.explain import explain from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target) sc = SimpleClassifier() sc.fit(X_train, y_train) explain(sc, X_test, y_test) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.727 seconds) .. _sphx_glr_download_auto_examples_plot_explain_example.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_explain_example.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_explain_example.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_