.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_explain_example.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_explain_example.py: Model Explanation ================= .. GENERATED FROM PYTHON SOURCE LINES 5-19 .. image-sg:: /auto_examples/images/sphx_glr_plot_explain_example_001.png :alt: class: 0, class: 1, class: 2 :srcset: /auto_examples/images/sphx_glr_plot_explain_example_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Running DummyClassifier() accuracy: 0.383 recall_macro: 0.333 precision_macro: 0.128 f1_macro: 0.185 === new best DummyClassifier() (using recall_macro): accuracy: 0.383 recall_macro: 0.333 precision_macro: 0.128 f1_macro: 0.185 Running GaussianNB() accuracy: 0.970 recall_macro: 0.973 precision_macro: 0.973 f1_macro: 0.971 === new best GaussianNB() (using recall_macro): accuracy: 0.970 recall_macro: 0.973 precision_macro: 0.973 f1_macro: 0.971 Running MultinomialNB() accuracy: 0.932 recall_macro: 0.936 precision_macro: 0.943 f1_macro: 0.936 Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) accuracy: 0.571 recall_macro: 0.609 precision_macro: 0.439 f1_macro: 0.486 Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) accuracy: 0.932 recall_macro: 0.935 precision_macro: 0.936 f1_macro: 0.933 Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) accuracy: 0.925 recall_macro: 0.931 precision_macro: 0.928 f1_macro: 0.926 Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993 === new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993 Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000) accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993 Best model: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) Best Scores: accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993 precision recall f1-score support 0 0.92 1.00 0.96 12 1 0.95 0.90 0.92 20 2 0.92 0.92 0.92 13 accuracy 0.93 45 macro avg 0.93 0.94 0.94 45 weighted avg 0.93 0.93 0.93 45 [[12 0 0] [ 1 18 1] [ 0 1 12]] /home/circleci/project/dabl/explain.py:45: UserWarning: Can't plot roc curve, install sklearn 0.22-dev warn("Can't plot roc curve, install sklearn 0.22-dev") | .. code-block:: default from dabl.models import SimpleClassifier from dabl.explain import explain from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target) sc = SimpleClassifier() sc.fit(X_train, y_train) explain(sc, X_test, y_test) .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.623 seconds) .. _sphx_glr_download_auto_examples_plot_explain_example.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_explain_example.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_explain_example.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_