Note
Click here to download the full example code
Model ExplanationΒΆ
Running DummyClassifier()
accuracy: 0.383 recall_macro: 0.333 precision_macro: 0.128 f1_macro: 0.185
=== new best DummyClassifier() (using recall_macro):
accuracy: 0.383 recall_macro: 0.333 precision_macro: 0.128 f1_macro: 0.185
Running GaussianNB()
accuracy: 0.970 recall_macro: 0.973 precision_macro: 0.973 f1_macro: 0.971
=== new best GaussianNB() (using recall_macro):
accuracy: 0.970 recall_macro: 0.973 precision_macro: 0.973 f1_macro: 0.971
Running MultinomialNB()
accuracy: 0.932 recall_macro: 0.936 precision_macro: 0.943 f1_macro: 0.936
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1)
accuracy: 0.571 recall_macro: 0.609 precision_macro: 0.439 f1_macro: 0.486
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5)
accuracy: 0.932 recall_macro: 0.935 precision_macro: 0.936 f1_macro: 0.933
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01)
accuracy: 0.925 recall_macro: 0.931 precision_macro: 0.928 f1_macro: 0.926
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro):
accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993
Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000)
accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993
Best model:
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000)
Best Scores:
accuracy: 0.993 recall_macro: 0.993 precision_macro: 0.994 f1_macro: 0.993
precision recall f1-score support
0 0.92 1.00 0.96 12
1 0.95 0.90 0.92 20
2 0.92 0.92 0.92 13
accuracy 0.93 45
macro avg 0.93 0.94 0.94 45
weighted avg 0.93 0.93 0.93 45
[[12 0 0]
[ 1 18 1]
[ 0 1 12]]
/home/circleci/project/dabl/explain.py:45: UserWarning: Can't plot roc curve, install sklearn 0.22-dev
warn("Can't plot roc curve, install sklearn 0.22-dev")
from dabl.models import SimpleClassifier
from dabl.explain import explain
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
wine = load_wine()
X_train, X_test, y_train, y_test = train_test_split(wine.data, wine.target)
sc = SimpleClassifier()
sc.fit(X_train, y_train)
explain(sc, X_test, y_test)
Total running time of the script: ( 0 minutes 0.623 seconds)