dabl.plot

dabl.plot(X, y=None, target_col=None, type_hints=None, scatter_alpha='auto', scatter_size='auto', drop_outliers=True, verbose=10, plot_pairwise=True, **kwargs)[source]

Automatic plots for classification and regression.

Determines whether the target is categorical or continuous and plots the target distribution. Then calls the relevant plotting functions accordingly.

See the functions in the “see also” section for more parameters that can be passed as kwargs.

Parameters:
XDataFrame

Input features. If target_col is specified, X also includes the target.

ySeries or numpy array, optional.

Target. You need to specify either y or target_col.

target_colstring or int, optional

Column name of target if included in X.

type_hintsdict or None

If dict, provide type information for columns. Keys are column names, values are types as provided by detect_types.

scatter_alphafloat, default=’auto’

Alpha values for scatter plots. ‘auto’ is dirty hacks.

scatter_sizefloat, default=’auto’.

Marker size for scatter plots. ‘auto’ is dirty hacks.

plot_pairwisebool, default=True

Whether to include pairwise scatterplots for classification. These can be somewhat expensive to compute.

verboseint, default=10

Controls the verbosity (output).

drop_outliersbool, default=True

Whether to drop outliers in the target column for regression.

See also

plot_regression_continuous
plot_regression_categorical
plot_classification_continuous
plot_classification_categorical