dabl.plot
.plot_regression_continuous¶
- dabl.plot.plot_regression_continuous(X, *, target_col, types=None, scatter_alpha='auto', scatter_size='auto', drop_outliers=True, correlation='spearman', prune_correlations_threshold=0.95, find_scatter_categoricals=True, jitter_ordinal=True, **kwargs)[source]¶
Plots for continuous features in regression.
Creates plots of all the continuous features vs the target. Relevant features are determined using F statistics.
- Parameters:
- Xdataframe
Input data including features and target.
- target_colstr or int
Identifier of the target column in X.
- typesdataframe of types, optional
Output of detect_types on X. Can be used to avoid recomputing the types.
- scatter_alphafloat, default=’auto’
Alpha values for scatter plots. ‘auto’ is dirty hacks.
- scatter_sizefloat, default=’auto’
Marker size for scatter plots. ‘auto’ is dirty hacks.
- drop_outliersbool, default=True
Whether to drop outliers (in the target column) when plotting.
- correlationstr, default=”spearman”
Correlation to use for ranking plots, passed to
pd.DataFrame.corrwith
. Valid values are ‘pearson’, ‘kendall’, ‘spearman’.- jitter_ordinalbool, default=True
Whether to add jitter, i.e. apply noise, to ordinal features, to reduce overlap.
- prune_correlations_thresholdfloat, default=.95
Whether to prune highly correlated features from the plot. Set to 0 to disable pruning.
- find_scatter_categoricalsboolean, default=True
Whether to find categorical features to use as hue in scatter plots.