Note
Go to the end to download the full example code
Adult Census Dataset VisualizationΒΆ
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
pd.to_datetime(series[:10])
Target looks like classification
/home/circleci/project/~/miniconda/envs/testenv/lib/python3.11/site-packages/seaborn/categorical.py:641: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
grouped_vals = vals.groupby(grouper)
/home/circleci/project/dabl/plot/utils.py:607: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
for name, group in data.groupby(target)[column]:
/home/circleci/project/dabl/plot/utils.py:607: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
for name, group in data.groupby(target)[column]:
Linear Discriminant Analysis training set score: 0.530
/home/circleci/project/dabl/plot/utils.py:607: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
for name, group in data.groupby(target)[column]:
# sphinx_gallery_thumbnail_number = 2
from dabl import plot
from dabl.datasets import load_adult
import matplotlib.pyplot as plt
# load the adult census dataset
# returns a plain dataframe
data = load_adult()
plot(data, target_col='income', scatter_alpha=.1)
plt.show()
Total running time of the script: (0 minutes 3.162 seconds)