Wine Classification Dataset VisualizationΒΆ

  • Target distribution
  • F=2.34E+02, F=2.08E+02, F=1.90E+02, F=1.35E+02, F=1.21E+02, F=1.01E+02, F=9.37E+01, F=3.69E+01, F=3.58E+01, F=3.03E+01, F=2.76E+01, F=1.33E+01, F=1.24E+01
  • Top feature interactions, 0.968, 0.952, 0.941, 0.937
  • Discriminating PCA directions, 0.952, 0.924, 0.884, Scree plot (PCA explained variance)
  • Discriminating LDA directions, 1.000
/home/circleci/project/dabl/preprocessing.py:172: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  pd.to_datetime(series[:10])
Target looks like classification
/home/circleci/project/~/miniconda/envs/testenv/lib/python3.11/site-packages/seaborn/categorical.py:641: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
  grouped_vals = vals.groupby(grouper)
/home/circleci/project/dabl/plot/utils.py:607: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
  for name, group in data.groupby(target)[column]:
Linear Discriminant Analysis training set score: 1.000

# sphinx_gallery_thumbnail_number = 4
import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
from dabl import plot
from dabl.utils import data_df_from_bunch

wine_bunch = load_wine()
wine_df = data_df_from_bunch(wine_bunch)

plot(wine_df, target_col='target')
plt.show()

Total running time of the script: (0 minutes 3.098 seconds)

Gallery generated by Sphinx-Gallery